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ABSTRACT 

Intermittent demand refers to random and low-volume demand. It appears irregularly with large 

proportion of zero values in between demand periods. The unpredictable nature of intermittent 

demand poses challenges to companies managing sophisticated inventory systems, incurring 

excessive inventory or stockout costs. In order to provide accurate predictions, previous studies 

have proposed the usage of exponential smoothing, Croston’s method and its variants. However, 

due to the bias and limitations, none of the classical methods has demonstrated adequate accuracy 

across datasets. Moreover, very few researches have explored new techniques to keep up with the 

ever-changing business needs. Therefore, this study aims to generalize the predictive accuracy of 

various machine learning approaches, along with the widely used Croston’s method for 

intermittent time-series forecasting. Using multiple multi-period time-series, we would like to see 

if there is a method that tends to capture intermittent demand better than others. In collaboration 

with a supply chain consulting company, we investigated over 160 different intermittent time 

series to identify what works the best. 
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INTRODUCTION 

 

Intermittent demand comes into existence when demand occurs sporadically (Snyder, Ord, & 

Beaumont, 2012). It is characteristic of small amount of random demand with large proportion of 

zero values, which incurs costly forecasting errors in forms of unmet demand or obsolescent stock 

(Snyder et al., 2012). Because of its irregularity and unpredictable zero values, intermittent demand 

is typically related with inaccurate forecasting. As a result, companies either risk losing sales and 

customers when items are out of stock, or being burdened with excessive inventory cost. 

 

According to the surveys by Deloitte (2013 Corporate development survey report | Deloitte US | 

Corporate development advisory), the world’s largest manufacturing companies are burdened with 

excessive inventory costs. Those having more than $1.5 trillion in revenue, spent an average of 

26% on their service operations. Therefore, small improvements in prediction accuracy of 

intermittent demand will often translate into significant savings (Aris A. Syntetos, Zied Babai, & 

Gardner, 2015). 

 

Intermittent demand is not only costly, but also common in organizations dealing with service 

parts inventories and capital goods such as machinery. Those inventories are typically slow-

moving and demonstrate a great variety in their nonzero values (Cattani, Jacobs, & Schoenfelder, 

2011; Hua, Zhang, Yang, & Tan, 2007).  

 

Previous research has tackled the specific concerns related with intermittent demand from various 

perspectives. Some pay attention to prediction distributions dependent on period of time (e.g., 

Syntetos, Nikolopoulos, & Boylan, 2010) and concentrate on managing inventory over lead-time, 

while others examine measurement performance of either entire prediction distribution or point 

distributions (e.g., Snyder et al., 2012). Earlier research has implemented classic time-series 

models including exponential smoothing and moving averages. However, those models are 

designed for high demand coming in regular intervals, and thus fail to address specific challenges 

faced with intermittent demand problems. More recent models tried to solve this problem with 

models specifically designed for low-volume, sporadic type of demand. To name a few, Croston’s 

method, Bernoulli process, and Poisson models. Despite the improvement in performance, those 
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methods do not provide sufficient inventory recommendations (Smart, n.d.). Some recent research, 

however, has turn to explore algorithms and improve predictive accuracy (e.g., Kourentzes, 2013).  

 

Despite the predecessors’ effort, there is no universal method that can handle the ever-changing 

business need of accurate demand forecasting. This paper will approach the business concerns 

from an analytic perspective, leveraging analytical tools such as Python and R. Specifically, 

current research aims to examine the predictive accuracy of various machine-learning approaches, 

along with the widely used Croston’s method for intermittent time-series forecasting. Using 

multiple multi-period time-series we would like to see if there is a method that tends to capture 

intermittent demand better than others. In collaboration with a supply chain consulting company, 

we investigated over 160 different intermittent time series to identify what works the best. 

Specifically, the research addresses the following four questions: 

 

1. How well do popular machine learning approaches perform at predicting intermittent 

demand? 

2. How do these machine learning approaches compare to the popular Croston’s method 

of time-series forecasting? 

3. Can combining models via meta-modeling (what we call two-stage modeling) improve 

capturing the intermittent demand signal? 

4. Can one overall model be developed that can capture multiple different intermittent 

time-series and how would it perform compared to the others? 

 

The remainder of this paper will start with a review on the literature on various criteria and methods 

applied to forecasting intermittent demand. The following section 3 will present the proposed 

methodology and discuss the criteria formulation. Next, in section 4 various models are formulated 

and tested. Section 5 outlines the performance of our models. Section 6 concludes the paper with 

a discussion of the implications of this study, future research directions, and concluding remarks. 
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LITERATURE REVIEW 

 

Applications in Various Business Backgrounds 

Forecasting intermittent demand such as demand of spare parts is a typical problem faced across 

industries. Despite its importance in inventory management, the sporadic intervals, low volume of 

order as well as large amount of zero values have made it especially difficult to accurately forecast 

intermittent demand (Hua et al., 2007). Consequently, business is burdened either with excessive 

cost of inventory or with the risk of stockout. This is not uncommon for high-price, slow-moving 

items, such as aircraft service parts, heavy machinery, hardware service parts, and electronic 

components. Companies that manufacture or distribute such items are often time faced with 

irregular demand that can be zero for 99% of time. Finally, intermittent demand poses challenges 

industry wide, and techniques needs to be improved to help companies efficiently address the 

concerns. 

 

Evolvement of Methodology  

Previous research has endeavored in forecasting demand using various techniques and methods. 

Among them, a classic method focusing on small and discrete distributed demand is Croston’s 

method. According to Croston (1972), for irregular demand of small size and large proportion of 

zero values, its mean demand is easily over-estimated, and its variance is underestimated. 

Therefore, he suggested an alternative approach, using exponential smoothing to adjust expected 

time intervals between demand periods and quantity demanded in any periods. He also assumes 

that time intervals and demand quantity are independent. Multiple models derived from Croston’s 

method with reasonable modifications. For example, Syntetos & Boylan (2005, 2001) claimed that 

the original Croston’s method was biased and developed the adjusted Croston method (aka 

Syntetos-Boylan Approximation (SBA), and Shale-Boylan-Johnston (SBJ) method). This method 

is shown to achieve higher accuracy than the original one for demand that has shorter intervals 

between orders (Snyder et al., 2012). 

 

However, most of these techniques are based on an exponential smoothing that considers 

predicting two components: (i) the time between demand, and (ii) order size, finally providing an 

average demand over the forecast horizon. This potentially underestimates the variance faced in 
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intermittent demand problems (Croston, 1972). Some recent researchers, however, turn to machine 

learning techniques. For example, Kourentzes (2013) reported that neural networks (NNs) 

demonstrate higher service level than the Croston’s method and its variants. Furthermore, because 

NNs do not assume constant demand and can retain the interactions of demand and arrival rate in 

between demand periods, they break the limitations of Croston’s method (Kourentzes, 2013). 

Despite its usefulness, NN techniques are under developed. Greater amount of data is required to 

train and validate NNs’ applicability and predicting power, and research is in urgent need. 

Therefore, the current research explored the innovative NN method as well as other machine 

learning methods, such as random forests, and gradient boosting machines, that are gaining 

popularity for their robustness.  

 

Measurement of accuracy 

Previous studies have suggested many measurements to assess the accuracy of time-series 

prediction, including mean absolute percentage error (MAPE), root-mean-square error (RMSE), 

and other statistics, such as the “percentage better” and “percentage best” summary statistics to 

name a few (e.g, Syntetos & Boylan, 2005). Nevertheless, even though the classical methods are 

well suited for minimizing RMSE, service level constraints are easily violated. The reason being 

that demand uncertainty being high will result in lost sales. Another widely used measure is the 

mean absolute percentage error (MAPE). MAPE is advantageous in interpretability and scale-

independency, but is limited in handling large amount of zero values (Kim & Kim, 2016). Other 

researchers propose that the mean absolute scaled error (MASE) is the most appropriate metric, 

because it is not only scale-independent, but also handles series with infinite and undefined values, 

such as the case in intermittent demand (Hyndman & Koehler, 2016). Mean Absolute error (MAE) 

has also been widely used, because it is easy to understand and compute. However, MAE is scale 

dependent and is not appropriate to use to compare different time series, which we do in our study. 

Taking the pros and cons of each metric into consideration, the current study uses MASE and MAE 

as the major measurements. MASE is leveraged to compare the overall performance of each type 

of model across series, and MAE is used to optimize model parameters for each individual series. 
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METHODOLOGY 

Data Description 

The dataset used was provided by an undisclosed industrial partner. It contains 160 time-series of 

intermittent demand for unknown items, with each time-series representing the demand of a 

distinct item. These time-series are observed either in daily or weekly frequency. There are three 

features in the original data: series number, time, and value. 

 

Feature Engineering 

Five features were created to capture the unique characteristics of the intermittent time-series 

problem, with the goal of helping the algorithmic approaches learn the patterns better. Specifically, 

the features aim to integrate two components into the learning process: time-series and intermittent 

demand. The following are features created: 

•  Time series: lag1, lag2, lag3 

•  Intermittent demand: non-zero interval, cumulative zeros 

The three lags are the demand values lagged up to three periods. The “Non-zero interval” is the 

time interval between the previous two non-zero demands. The “cumulative zeros” is the number 

of successive zero values until lag one. It shows the length of time during which no demand occurs. 

A data dictionary and an example data table with newly generated features can be found in the 

Appendix of the paper.  

 

Sequential Data Partitioning 

Each series was trained on the individual level to capture the unique profile of each item. We used 

sequential data partitioning to split each series into training and testing sets, with 75% of total 

observations (starts at the 4th observation) in the training set, and 25% in the testing set.  

 

Data Preprocessing 

All sets were normalized using Min-Max Scaling (i.e. “range” method in R caret package) to 

ensure all numeric features were on the same scale, ranging from 0 to 1. Normalizing numeric 

inputs generally avoids the problem that when some features dominate others in magnitude, the 

model tends to weigh more on large scale features and thus underweight the impact of small scale 

features regardless of their actual contribution. For features used in this research, the nzInterval 
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and zeroCumulative were in relatively small scales, typically less than 5, while the lagged demands 

ranged up to 500. As mentioned in the feature engineering section of the paper, nzInterval and 

zeroCumulative were identified as key variables to capture the intermittent component of the 

demand profile, and thus normalization was extremely important to avoid a biased model.  

Training and testing sets were pre-processed separately, because forecasts are made on a 

rolling basis, but the “min” and “max” was carried through from the training set.  

 

Model Selection 

Neural networks (NN) are robust in dealing with noisy data and flexible in terms of model 

parameters and data assumptions. With multiple nodes trying various combination of weights 

assigned to each connection, a NN can learn around uninformative observations, which indicates 

great potential to find out relationships within intermittent time-series data without other extra 

information. 

 

Gradient Boosting Machines (GBM), as a forward learning ensemble method, is robust to random 

features. By building regression trees on all the features in a fully distributed way, we expect GBM 

to capture some features of the unstable intermittent demand. 

 

Random Forests (RF), similar to GBM, is based on decision trees. The difference is that GBM 

reduces prediction error by focusing on bias reduction (via boosting weak learners), while RF 

focuses on reducing error by focusing on variance reduction (via bagging or bootstrap aggregation). 

 

Meta modeling (a.k.a. two-stage modeling in our paper), is suggested by some researchers to have 

better performance than using single base learners in isolation. Particularly, more information 

could be gathered via models of different focuses. 

 

Model Comparison / Statistical Performance Measures 

The statistical performance measures adopted here were Mean Absolute Error (MAE) and Mean 

Absolute Scaled Error (MASE). MAE is selected because it is easy to interpret and understand, 

and it treats errors equally. However, it cannot be used to compare across time-series because it is 

scale dependent. Therefore, the research also utilized MASE to provide a more holistic perspective 
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by comparing accuracy across different time-series. Figures 1 and 2 below detail the study design 

just described above. 

 

Study Design/ Workflow 

Figure 1. Overall Flow 

 

 

 

Figure 2. Model Training Details 
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MODEL DEVELOPMENT 

Common Setup 

All models were trained using 3-fold cross-validation. Considering the measures used in this 

research, all regression-type models were optimized on MAE. Since each time-series in our dataset 

refers to a unique item, to capture the unique profile of each series most precisely, each model 

except an aggregated model was built and trained across 160 time-series. In other words, instead 

of training exactly one model, a set of 160 models was generated. Only the first record of each test 

set was directly used, and predicting features of the rest of the test set were generated on a rolling 

basis based on the prediction recorded. 

 

The formula below is a general one used in all single models, as well as the 1st stage models of the 

meta-modeling approach. It also served as a base formula for the rest of the models: 

 

𝑑𝑒𝑚𝑎𝑛𝑑 ~ 𝑛𝑧𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 𝑧𝑒𝑟𝑜𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 + 𝑙𝑎𝑔1 + 𝑙𝑎𝑔2 + 𝑙𝑎𝑔3 

 

One thing to notice here is that the response variable used in this formula (i.e. demand), refers to 

the scaled demand calculated as the actual demand divided by the maximum demand value of a 

specific training set. This transformation allows the response variable to be in the same scale of 

the independent variables, potentially improving the preciseness of the model. Normalization on 

response variables is recommended if you have a similar data set but is not required. If it is adopted, 

then the prediction results should be reverted by multiplying the maximum. 

 

Single Stage Model 

Three sets of single stage models were trained using Neural Network (NN), Quartile Random 

Forest (QRF), and Gradient Boosting Machines (GBM) respectively. 

 

The NN models used were of one layer given the limited number of input features. The hidden 

layer node size was tuned over 1, 3, 5, and 10 hidden nodes according to different rules mentioned 

in other studies in regards to tuning a feed-forward neural network. Specifically, most used rules 

such as “2n", “n" and “n/2", with n represents the number of input variables. 
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Aggregated Single Stage Model 

Considering it is time-consuming to train and manage multiple models for different items, we also 

tried building an aggregated model that can fit all time-series given at once. The rationale behind 

such a model was that time-series with intermittent demand may share some pattern in common, 

especially if they were from the same company or product category. Also, machine learning 

methods tend to be data-hungry, while it is hard to collect large amount of training data from the 

same item (series) without using lots of outdated data.  

 

Generally, this model followed the same setup as the NN model except that the training set is an 

aggregated one of the 160 smaller ones for each series. A modified model was trained by including 

the “timeSeriesID” as a categorical feature, for the purpose to capture the unique characteristics of 

each series as much as possible asides from their commonality. 

 

Meta-Model 

The 1st stage classification models adopted Logit, NN, and RF, respectively. They were optimized 

on receiver operating characteristic (ROC) curves. The output of the 1st stage model, is the 

probability of whether the non-zero demand will occur or not. The prediction output was then fed 

as an independent variable into the 2nd stage meta-model forecast, where QRF and NN were used 

to predict the temporal demand. Due to the nature of our data set, probabilities might not only 

contain information about whether there will be demand, but also the size of the demand. Hence, 

the output of the 1st stage models were kept in the form of a probability instead of being converted 

to the binary predictive class format often performed with classification-type models. 

 

The performance of the 1st stage models were not assessed separately, because which statistical 

measure can lead to the best impact of the 1st stage model on the 2nd stage model is hard to identify 

and is beyond of scope of this paper. Moreover, there is no guarantee that the model with highest 

performance will yield the best results after combing with the 2nd stage models. Our research cares 

only about the final prediction performance in terms of MAE and MASE, so all 1st stage models 

were kept and applied to the 2nd stage modeling.  
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RESULTS 

Machine Learning vs. Croston’s 

Figure 3 summarizes the average MASE of 3 single step models, one aggregated model, as well 

as the best performed meta-model, along with the results of traditional Croston’s Method.  

 

Figure 3. Model performance on test set 

 

 

According to the results, all machine learning methods had lower MASE than the Croston’s 

method, and the QRF model performed the best, with a 0.06 decrease in the average MASE. The 

predictions on test datasets performed reasonably well without obvious overfitting issues. 

Moreover, a paired t-test showed that the QRF generates significantly lower MASE than the 

traditional Croston’s method, indicating that this model did achieve higher predictive accuracy.   

 

The MAE table below shows similar results. Again, MAE cannot be compared across series. But 

the focus of this research is about the overall performance of a certain machine learning method. 

Besides, all the models used the same 160 series for model training and testing. Hence, we deemed 

the average MAE to be a valid measurement to compare the overall performance of each model.  

Table1. Average MAE (across same 160 time-series) 
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On an individual basis, our results do show overfitting issue for certain series. According to other 

studies, this issue usually exists in both machine learning models and the Croston’s model, 

indicating the problem may lie with the random nature of certain time-series. 

 

Meta-Model vs. Single-Step Model 

The most accurate meta-model, which used RF in the first step and QRF in the second step, did 

not outperform the one-step QRF as expected. All the other meta-models performed worse than 

the corresponding one-step models. One possible explanation could be that time series forecasting 

requires a rolling forecasting, and as a result, the prediction error was amplified through each step.  

 

Aggregated Model vs. Series-Level Model 

The aggregated NN (the single model that take all time-series data as input) to create one overall 

model, showed similar results as the series-level NN with time-series ID included as a feature. 

That is not to say aggregated NN is as good as series-level NN, because series-level NN has greater 

potential and flexibility to be modified on some parameters or input features to better fit the 

demand of certain item. However, companies carrying large numbers of SKUs with intermittent 

demand may want to adopt the aggregated approach to simplify their model training. This is an 

operational decision-support design decision that will need to be considered depending on the 

business. Moreover, this over-arching approach provides an alternative to items without enough 

data to train a series-level model individually, and is often done particularly in retail when 

decision-facilitators are building bottom-up or top-down forecasts for assortment planning 

decisions.  

 

IMPLICATIONS AND LIMITATIONS 

 

The current research explored three approaches to predict intermittent demand. Two approaches 

trained individual model for each time series, the aggregated model trained a single model that can 

be applied to any series. Among the individual level approaches, most single stage models perform 

better than the meta-model. The most accurate meta-model which used RF-QRF achieves 

approximately the same MASE as the QRF single stage model. Although the paired sample t-test 
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indicated that the QRF single stage model (p < .01) decreased the error significantly from the 

Croston’s method, we noticed that the models tend to give stable predicted values without 

capturing all the fluctuations appearing in actual data. This behavior resembles the Coston’s 

method, which yields an average demand that repeats for all the predicted time periods. Statistics 

wise, the present research provides a way of better forecasting the demand level. Such prediction 

will help business in determining the service level and saving inventory cost. However, some 

business may be more interested in meeting the unexpected demand than lowering inventory cost. 

In that scenario, predictions that capture the spikes of the demand curve will be more preferable. 

Therefore, future research may explore ways to improve the prediction by capturing the irregular 

fluctuations more precisely.  

 

CONCLUSION 

 

A small increase in predictive accuracy can help firms save substantial amount of inventory costs 

while maintaining acceptable service levels. As the results of this study demonstrate, machine 

learning techniques, such as Quartile Random Forest, can improve predictive accuracy for 

intermittent demand forecasts. We consider the limitation of our models to be fitting small number 

of inputs into a data-hungry model. However, future analysts can explore more input features 

related to intermittent demand prediction. There are possibilities some models will perform badly 

in terms of statistical performance measures, but perform well in achieving business performance 

measures. In this case, the decision maker would need further information about the costs 

associated with a low service level, to leverage between statistical and business measures. 
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APPENDIX A 

Example of New Features Generated 

value nzInterval zeroCumulative Lag1 Lag2 Lag3 

70 
     

127 
 

0 70 
  

101 1 0 127 70 
 

0 1 0 101 127 70 

0 1 1 0 101 127 

0 1 2 0 0 101 

73 1 3 0 0 0 

0 4 0 73 0 0 

55 4 1 0 73 0 

0 2 0 55 0 73 
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APPENDIX B 

Data Dictionary 

Variable Type Description 

timeSeriesID Categorical ID for each time series (S1-S160) 

time Date The last day of a time period. 

value (Dt) Numeric The volume of demand at a certain time. 

S1-S80 are daily demand, S81-S160 are weekly demand 

nzInterval Numeric The number of time periods between the previous two 

periods where (non-zero) demand occurs. 

zeroCumulative Numeric The number of time periods since the last period where 

(non-zero) demand occurs. 

Lag1, Lag2, Lag3 Numeric Demand of the previous 3 time periods. lag1 = Dt-1, lag 2 = 

Dt-2, lag 3 = Dt-3  
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APPENDIX C 

Paired Sample t-Test on Testing Set 

Average MASE using Croston’s method Average MASE using QRF 

0.01653973 0.10308096 

t = 2.7298 

Number of observations in each group = 160 

p-value = 0.007048 

 

 


